
Safe Planning & Parking for a Wheeled Robot in Unstructured
Environments

Chinmay Garg∗†, Jaya Aadityaa Ganapathy Subramanian∗†, Namya Bagree∗†, Sourojit Saha∗†

Abstract— Autonomous, non-holonomic wheeled robots are
being increasingly used in unstructured environments for oper-
ations like exploration, search and rescue, etc. Many situations
may require robots to park themselves during navigation and
operation in these types of environments. These situations can
arise due to various reasons such as sensor failure, unfavorable
operating conditions, etc., but specifying a safe parking spot
and navigating to it safely can be difficult in unstructured
environments. Moreover, for certain applications these robots
usually operate in groups of heterogeneous robots and have
to efficiently plan their routines to prevent interference among
themselves. This creates a need for each robot to plan out
feasible paths to navigate and also make space for other
robots by safely moving aside. In this report, we aim to
develop a planner for non-holonomic wheeled robots to reach
any given goal position and orientation safely in unstructured
environments with multiple obstacles. We also present a novel
solution to efficiently find a safe parking location for a vehicle
in its surrounding environment. This allows the vehicle to either
safely stop when faced with adversarial scenarios or allow other
robots in its team to navigate through the environment. We
demonstrate the success of our approach through simulated
and hardware results on mobile ground robots.

I. INTRODUCTION

Most autonomous vehicle research is focused on operation
in structured environments where vehicles can park in a safe
and designated spot. However, there is an increased focus on
research in the robotics community on fast moving ground
vehicles in unstructured environments. Autonomous systems
in unstructured environments are faced with complexities as
there are no set rules that can be applied to the planner,
making navigation and search for a safe stop/parking spot a
non-trivial research problem.

Autonomous mobile robots are used in unstructured en-
vironments for multiple use cases, with one of them being
search and rescue operations. To explore regions in a time
efficient manner, robots work in a group [9]. This leads to
scenarios where explorer robots scan the region and provide
information to robots with enhanced capabilities to reach a
desired location. An important feature in such conditions is
to make way for incoming robots. In unstructured environ-
ments, this can necessitate the initial robots to shift to a
region in a desired orientation while avoiding obstacles.

This gives rise to our target problem, planning for a
wheeled robot in an unstructured environment to safely
navigate to a location and park in the desired orientation.
We develop and run a planner for non-holonomic vehicles

∗Authors contributed equally
†Mechanical Engineering Department, Carnegie Mellon University,

Pittsburgh, PA, USA {chinmayg, jganapat, nbagree,
sourojis}@andrew.cmu.edu

Fig. 1: Safe planning and parking diagram

in an explored environment. The planner makes use of a ROS
framework for easy integration with a real vehicle setup and
is implemented on both, simulation and results in multiple
environments with no structure. A safe parking planner has
also been developed based on potential maps based on the
environment to generate a feasible path to park and get out
of the way for any other potential hindrances.

II. METHOD

A. Map Generation

For map generation, we used LIDAR based SLAM algo-
rithm, Super Odometry [11]. It was used to generate a 3-D
point cloud of the environment. The point cloud generated
had a resolution of 20cm for each voxel. This point cloud was
was taken as the basis for map generation for our planner.
The map we used was in the form of occupancy grid. Each
grid cell in the occupancy grid could have three values, -
1 meaning the state of the grid is unknown, it can be an
obstacle or a Open area, 0 meaning the grid is a Open area,
and 1 meaning the grid is occupied by obstacle. Fig. 3 and
2 show the maps used in our planner. Conversion of point
cloud to occupancy grid was accomplished in the following
steps:

• Firstly, the point cloud was taken, and the its range in
X and Y direction was calculated. This was then used
as the size of the occupancy grid. All the grids in the
occupancy grid were initialised with a value of -1.

• For all the points from the ground level up-to the height
of the robot, the corresponding grid cells were assigned
a value of 1. This was because they were considered as
obstacles, as they would cause collision with the robot.

• The points which were above the robot height were
considered as obstacle free and the corresponding grid
cells were assigned a value of 0.



Fig. 2: MIT Tunnel Map (Green: Open area; Yellow: Obsta-
cle; Purple: Unknown)

Fig. 3: NSH B-Level Map (Green: Open area; Yellow:
Obstacle; Purple: Unknown)

• Finally to account for the scaling between the point
cloud and the occupancy grid, the occupancy grid was
interpolated by a factor of 5 in both X and Y direction.

B. Lattice State Space Generation

Many robots are non-holonomic and cannot move instan-
taneously in any direction. Consequently, it is necessary to
generate a lattice to implement a search algorithm. In [6],
a multi-resolution lattice was generated offline for a given
map accounting for the motion constrains of the car, in order
to generate a smooth, feasible path. In our implementation,
the complete lattice is not generated offline, but rather it is
generated online using precomputed motion primitives.

The state space of the non-holonomic robot was dis-
cretized in x, y and θ. The grid resolution for x and y
was 0.2 metres and for θ was 22.5◦. For each discretized
θ, a set of motion primitives were generated which depicted
transitions between states. The primary considerations while
generating was the feasibility of the motion primitives to

Fig. 4: Spline Based Primitives

be tracked by a car. In addition to this, another key aspect
was having each motion primitive action to result in a state
part of the discretized state space. During planning, the
motion primitives are used to generate the successors of any
given node and implicitly construct the lattice for search.
In order to reach feasible motion primitives, the following
implementations were explored:

1) Dynamics based primitive: A kinematic bicycle
model [7] is a common way to model a path that a ground
vehicle would actually follow given a set of desired steering
angle and velocity. An initial trajectory to be given as input
to the controller is needed for this. The initial and final
positions were connected by an almost circular trajectory.
An LQR controller was run over the initial and final desired
states based on the discretization of the state space. Despite
setting providing a high goal-position cost, the controller
wasn’t able to provide paths that exactly matched the given
goal position. This could be solved by getting a better
initial trajectory, or be left to the controller to solve for
in real time when multiple paths append themselves. As
we don’t account for the steering angle in our state space,
multiple primitives from this method connected wouldn’t
map to exactly feasible paths. We decided to let the controller
handle accurate following of the motion primitives that were
constrained as discussed ahead.

2) Spline based primitive: A spline can generate path
between the start and end location, taking into account
the orientations at the start and end points as well. Cubic
spline was used to generate the path between two such
points. However, no curvature constraint can be put on
cubic spline, which was a drawback for the spline based
primitive. Five spline based motion primitives were generated
for end orientations of −45◦,−22.5◦, 0◦, 22.5◦, 45◦. These
are shown in Fig. 4

3) Dubins path based primitive: Dubins path [2] de-
termines the shortest curve connecting any two points in
a two-dimensional Euclidean plane (i.e. x-y plane) with a
minimum turning radius constraint on the curvature of the
path and terminal tangents. Using Dubins path, the motion



Fig. 5: Dubins Primitives

primitives can be generated such that the terminal state of
each Dubins path could be directed to land back on the
discretized state space. These factors made this approach
extremely feasible for our implementation. Hence Dubins
path was used to generate the motion primitives of the robot
for any orientation in the discretized state space. A minimum
turning radius of 1.5m for the experiment ground robot
was used. Two sets of motion primitives were generated -
one with only forward primitives, and one with both for-
ward and backward primitives. The forward primitives were
generated at −45◦,−22.5◦, 0◦, 22.5◦, 45◦ and backward at
−22.5◦, 0◦, 22.5◦. Two additional primitives were generated
at 0◦ with twice and four times the length of first primitive.
This allows faster convergence to the goal in relatively open
environments where the planner can take larger steps towards
the goal. The generated Dubins primitives can be seen in Fig.
5.

C. Collision Avoidance

Fast collision avoidance checking is necessary for implic-
itly generating the lattice while running the planner online.
In addition to this, the robot is not a point robot and its form
factor needs to be accounted for in collision checking.

In order to tackle this, the grid cells covered by a robot
while moving in each motion primitive was calculated for
collision checking. At any given state, the robot was approx-
imated as a uniformly distributed set of points describing
a rectangle, conservatively approximating the shape of the
robot. The grids covered at the given state were stored
and this was repeated for all points along each motion
primitive. Hence for each primitive, the grids covered by
robot traversing that motion primitive were calculated for fast
collision avoidance check during the search. An example of
the same can be seen in Fig. 6.

D. Planner

Graph representation: Each lattice state in the graph is
represented by < x, y, θ >, where x and y are the indices
in the discretized grid space and θ is the orientation of the

Fig. 6: Grids covered for 45◦ motion primitive

robot. We generate the lattice graph implicitly by generating
successive lattice states while running the weighted A*
search on the occupancy map. For generating the successors
of each node in the lattice graph, we check if the primitive
end state is in the open space and if there are no collisions
using the precomputed grid cells for each motion primitive.

Lattice Costs and Heuristics: The cost g of each motion
primitive is defined by the length of the primitive itself,
for both the forward and the backward primitives. For the
heuristic h in the weighted A* search, we use a combi-
nation of Dubins path length [10] and backward Dijkstra
costs[1]. The Dubins path length takes acts as the mechanism
constrained heuristic for the non-holonomic wheeled robot
and the backward Dijkstra takes the obstacles from the
environment into account being the environment constrained
heuristic. The backward Dijkstra heuristic costs can be seen
in Fig. ??. Although, Dubins path length is not consistent
when including backward primitives, but as both the heuristic
functions are admissible, we use a maximum of the two
heuristics as our combined heuristic for the weighted A*
search.

g = Length of Motion Primitive
h = max(hDubins, hBackwardDijkstra)

Weighted A-star: We implemented a Weighted A* Search
with implicit lattice-graph generation to search from the start
point to the goal, and find a path. The heuristic is inflated
with a weight to bias the search to move towards the goal
and improve the speed. This weight also allows us to emulate
different searches, where with a weight of 0 the effect of
heuristic is completely removed (Dijkstra’s Search) and with
a weight of 1 it becomes a simple A* Search.

E. Traversability Map and Safe Parking

While a robot is navigating a path it is possible it encoun-
ters a situation where the robot should safely park itself at
a location. But, in unstructured environments there are no
well-defined parking spots. Therefore, to find safe parking
locations in an unstructured map, we compute a parking cost
Ψ for the environment in a known map. The cells in the grid
space with the lowest Ψ are then considered to be the safe



parking spots and in case of any adversity the robot safely
plans a path to the safe parking spot.

The parking cost Ψ is defined as a weighted combination
of the Safe Parking cost which indicates the overall safety
of the parking spot, and the Forward Dijkstra cost from the
current location which indicates the cost of reaching the
parking spot. The weights of these costs can be modified
based on the situation that the robot is facing. For instance,
if the robot should go to a safer parking location without
accounting for the time it takes to reach the parking spot,
then λsp can be increased and λfd can be decreased.

Ψ = λsp × CSafeParking + λfd × CForwardDijkstra

The forward Dijkstra Cost CForwardDijkstra is essentially
the cost of the shortest path from the robot’s current location
to the safe parking spots. We define the Safe Parking Cost
CSafeParking as a combination of three different costs,
Traversability Cost, Obstacles Cost and Backward Dijkstra
Cost i.e. Cost to goal. The Traversability Cost takes into
account the overall terrain of the environment, such as the
roughness, slope and step in each grid cell as presented
in [8]. This is useful in unstructured outdoor environments
like forests, hills, etc. where it would be safer to park the
vehicle on smooth and flat areas. The Obstacles Cost is
useful in ensuring that the vehicle moves away from the
open areas and closer to the obstacles, to avoid blocking the
free spaces which may be used by other vehicles and robots
for moving around in the environment. Lastly, the Backward
Dijkstra Cost keeps track of the cost to goal from the each
cell in the environment, so that when finding a safe parking
spot the robot doesn’t go away from the goal to park safely.

CSafeParking = f(CT , CO, CH)

where CT = Traversability Cost
CO = Obstacles Cost
CH = Backward Dijkstra Cost

These costs can be combined together by a simply adding
the costs together to get a safe parking cost. But, with more
experiments and testing with different environments (both
indoor and outdoor), these costs can be combined together
with a better function that results in a more informative
safe parking cost. These costs can be computed offline for a
known map to save on the online computation.

In our experiments, we worked with indoor maps where
the traversability cost don’t exactly provide any information
as the entire floor surface is flat. Therefore, we ignored
the traversability cost in our CSafeParking computation.
Secondly, for CForwardDijkstra since the forward Dijkstra
computation adds significant overhead while running the
robot in real-time, for our experiments we also decided
to only emulate adversarial situations where the cost of
reaching the parking spot doesn’t matter. Therefore, for
our experiments we use a simplified overall parking cost
Ψsimplified with λsp = 1. The generated costmaps can be
seen in Fig. 7 and 8.

Ψsimplified = λsp × (CO + CH)

Fig. 7: (Left to Right) Backward Dijkstra Costmap, Obstacle
Costmap and the Overall Parking Costmap for MIT Tunnel
Map with an arbitrary goal

Fig. 8: (Left to Right) Backward Dijkstra Costmap, Obstacle
Costmap and the Overall Parking Costmap for NSH B-Level
Map with an arbitrary goal

III. EXPERIMENTAL SETUP

A. Software Implementation

The offline scripts to generate primitives, collision check-
ing, creating maps etc. were written in Python, and the
required outputs were saved as JSON configuration files. All
onboard code pertaining to the motion planner was devel-
oped in C++, which read the pre-generated configuration
files. This motion planner was further integrated with a
ROS framework to run simulations and operate the wheeled
mobile robot. The complete code base can be found in the
GitHub repository here.

1) ROS Framework: Our objective was to use our planner
on a ground vehicle to run it in real-time during the planning
process. A ROS node allows easy transfer of data between
all systems running on a ground vehicle, such as percep-
tion, planning, controls, etc. Therefore, we implemented our
planner in a ROS framework, taking in the current ground
vehicle’s location and desired end position and orientation
and sending out a feasible set of points to be followed by
the ground vehicle to reach the goal. This ROS node was
run at a rate of 1 Hz and only ran the planner when a new
goal was published to it.

https://github.com/nefario7/planning-parking/tree/develop_parking


Fig. 9: Simulated environment in Gazebo

2) Controller integration: The ground vehicle has to
follow the output trajectory from the planner. As we don’t
re-plan at every instant when the ground vehicle travels to
the goal, the trajectory is generated only once by the planner.
To ensure continuous tracking of the desired plan, an iLQR
controller [5] was setup which clipped the current position
to the closest point on the trajectory and gave the desired
velocity and steering commands to the ground vehicle.

3) Simulator setup: To test the performance of our plan-
ner, we implemented our planner on maps created from
real data and visualized it on matplotlib [3]. To further
test out our ROS framework and controller integration, we
simulated indoor environments without a defined structure
on Gazebo [4]. This was selected for easy integration with
ROS and provided an initial test for our planner-controller
performance.

B. Hardware Implementation

Our hardware setup included a Traxxas remote controlled
truck fitted with a communication node, LiDAR and IMU
sensors, a Jetson AGX Xavier and a motor controller.

For our perception framework, we make use of Super
Odometry [11], which is an IMU-centric SLAM pipeline
that provides estimates of each agent’s odometry. We get the

Fig. 10: Hardware setup and test location

Fig. 11: Planner run on a simulated environment, white
points depict the planned route

global LIDAR points are added at each step to help make
our occupancy map as defined in Section II-A.

A base station is used to provide goal positions through a
way point sharing interface on RViz. All systems are run over
ROS and use the DDS protocol for real-time communication.

IV. RESULTS

1) Simulation results: We tested our planner in simulation
in Gazebo for various pairs of start and goal states. The
environment maps used were NSH B-level and a tunnel
environment in Gazebo. Two sets of primitives were used
for testing the planner, forward-only and forward-backward.
Both planner tests, were able to find paths from any start
and goal configuration. For the given primitives and lattice,
we arrived at the optimal path. During pseudo adversarial
situations, the safe parking planner is called and the robot
successfully finds a planned trajectory to the nearest safe
parking spot.

2) Hardware results: Our hardware testing began with
mapping the environment, converting it to a cost map and
then testing the hardware on the generated trajectory. Start
and goal pairs were given for making a u-turn, traversing
a tunnel and moving into a room. The robot tracked the
generated paths sufficiently well. The robot was also able
to track the re-planned path to the nearest safe parking spot
well. The obstacles faced during hardware testing were pri-
marily in domains outside planning - mapping and controls.
Pre-processing of generated maps was necessary to remove

Fig. 12: Planner run on an RC truck, white points indicate
the plan and green line indicated the safe parking maneuver



outliers and reduce noise to allow finding feasible paths.
Additionally, controller improvements can aid the robot in
tracking the generated path better and reduce drift. Our
hardware implementations are shown in this YouTube video.

V. CONCLUSIONS

In this project, we have presented a planner for navigation
and adversarial safe parking in any given environment. Our
approach involves a weighted A* search with implicit lattice
generation accounting for robot feasible motions. Further, we
propose a safe parking approach which relies on a parking
cost map, combining multiple factors from the environment
like traversability, obstacles and the cost to goal. This is then
used determine the safe parking regions in a given map that
the robot can move to an adversity. The resulting approach
has been validated in simulation and hardware for navigation
and safe parking for a non-holonomic wheeled robot with
positive results. In the future, we can further extend this work
by augmenting our planner for partially known environments,
and developing a more informative safe parking function for
unstructured environments. Additionally, we would also like
to use an anytime approach, wherein we iteratively improve
the paths found in real-time.

ACKNOWLEDGMENT

We thank Dr. Maxim Likhachev and his teaching assis-
tants, Rishi Veerapaneni and Muhammad Suhail Saleem,
of the Planning and Decision-Making for Robotics (16-
782) course at Carnegie Mellon University for guiding us
through this project and helping us out overcome difficulties
faced while implementing various planning algorithms in our
project.

REFERENCES

[1] Edsger W Dijkstra. “A note on two problems in
connexion with graphs”. In: Numerische mathematik
1.1 (1959), pp. 269–271.

[2] Lester E. Dubins. “On Curves of Minimal Length
with a Constraint on Average Curvature, and with Pre-
scribed Initial and Terminal Positions and Tangents”.
In: American Journal of Mathematics 79 (1957),
p. 497.

[3] J. D. Hunter. “Matplotlib: A 2D graphics environ-
ment”. In: Computing in Science & Engineering 9.3
(2007), pp. 90–95. DOI: 10.1109/MCSE.2007.
55.

[4] N. Koenig and A. Howard. “Design and use paradigms
for Gazebo, an open-source multi-robot simulator”.
In: 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566). Vol. 3. 2004, 2149–2154 vol.3.

[5] Weiwei Li and Emanuel Todorov. “Iterative Linear
Quadratic Regulator Design for Nonlinear Biological
Movement Systems.” In: vol. 1. Jan. 2004, pp. 222–
229.

[6] Maxim Likhachev and Dave Ferguson. “Planning
Long Dynamically Feasible Maneuvers for Au-
tonomous Vehicles”. In: The International Journal of
Robotics Research 28.8 (2009), pp. 933–945.

[7] Philip Polack et al. “The kinematic bicycle model:
A consistent model for planning feasible trajectories
for autonomous vehicles?” In: 2017 IEEE Intelligent
Vehicles Symposium (IV). 2017, pp. 812–818. DOI:
10.1109/IVS.2017.7995816.

[8] David Jacob Russell et al. “UAV Mapping with
Semantic and Traversability Metrics for Forest Fire
Mitigation”. In: ICRA 2022 Workshop in Innovation
in Forestry Robotics: Research and Industry Adop-
tion. 2022. URL: https://openreview.net/
forum?id=Bbx8xClhG9.

[9] Sebastian Scherer et al. “Resilient and Modular Sub-
terranean Exploration with a Team of Roving and Fly-
ing Robots”. In: Field Robotics Journal (May 2022),
pp. 678–734.

[10] Andrew Walker. Dubins-Curves: an open implementa-
tion of shortest paths for the forward only car. 2008–.
URL: https://github.com/AndrewWalker/
Dubins-Curves.

[11] Shibo Zhao et al. “Super Odometry: IMU-centric
LiDAR-Visual-Inertial Estimator for Challenging En-
vironments”. In: 2021 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS) (2021),
pp. 8729–8736.

https://youtu.be/1tmVH_gJtGY
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/IVS.2017.7995816
https://openreview.net/forum?id=Bbx8xClhG9
https://openreview.net/forum?id=Bbx8xClhG9
https://github.com/AndrewWalker/Dubins-Curves
https://github.com/AndrewWalker/Dubins-Curves

	INTRODUCTION
	METHOD
	Map Generation
	Lattice State Space Generation
	Dynamics based primitive
	Spline based primitive
	Dubins path based primitive

	Collision Avoidance
	Planner
	Traversability Map and Safe Parking

	EXPERIMENTAL SETUP
	Software Implementation
	ROS Framework
	Controller integration
	Simulator setup

	Hardware Implementation

	RESULTS
	Simulation results
	Hardware results


	CONCLUSIONS

