
16-833 Project Final Report
Collaborative Heterogeneous-Sensor SLAM

Namya Bagree1, Arjun Sengupta1, Sourojit Saha1, Hannah He1 and Talha Faiz1

Abstract— Heterogeneous multi-robot SLAM tackles the
problem of combining information from multiple sensors (of
different types), from multiple robots, to build a map and
localize the agents within it. Though several advancements have
been made in multi-robot SLAM, as well as heterogeneous
sensor SLAM (on a single robot), their combination is relatively
unexplored and introduces new challenges. This project studies
this problem, and explores a new method to combine maps
from multiple robots, possibly with heterogeneous sensor data.
The stack leverages a global alignment module and a map-
merging module using the generalized-ICP algorithm, to com-
bine pointclouds from different robots, and produce a common
global map. We implement the system on real robots equipped
with LiDAR sensors and monocular cameras. The system, when
tested with LiDAR data produces promising results, and we
explain our assumptions for it to work well with visual data.

I. INTRODUCTION

The Robot Localization and Mapping problem on multiple
robots (Collaborative-SLAM or C-SLAM) is a research area
that has seen significant developments in recent times. C-
SLAM aims to combine data collected by multiple robots,
into globally consistent estimates of a common map and
of each robot’s state [6]. While this coordination between
multiple robots enables more accurate SLAM, it is accompa-
nied by several other challenges - most of which have ample
descriptions and potential solutions in the literature. Current
C-SLAM techniques primarily rely on combining maps of
similar (homogeneous) sensor data. A problem not discussed
too often is the presence of a framework to allow multiple
robots with heterogeneous sensor capabilities to build and
work on the same map. Little work has been done [1] - [5]
on combining maps obtained from different types of sensors
(heterogeneous data) in multi-robot SLAM. In this paper, we
investigate the problem of C-SLAM with robots equipped
with heterogeneous sensors.

We provide a detailed overview of the problem in the
“problem definition” sub-section. We also highlight the
potential applications of such a system - supporting the
motivation for work in this area. In addition to an extensive
literature review, we propose a system to tackle the problem
of heterogeneous sensor C-SLAM, using map-alignment
from point-cloud data. We also test the implementation of
our system’s important modules on actual robots, and report
the results of the experiments conducted by us.

The rest of this paper is organized as follows: The “related
work” section summarizes the prior-work in the area of

1All authors are students at Carnegie Mellon University, 5000
Forbes Avenue, Pittsburgh, PA 15213, USA (nbagree, arjunsen,
sourojis, hannahhe, mfaiz)@andrew.cmu.edu

multi-robot SLAM with heterogeneous sensors, in addition
to a literature survey of heterogeneous sensor fusion, map-
merging techniques, and C-SLAM in general. Apart from
that, it also summarizes existing map-alignment techniques
- since this is a vital part of the system we propose in a
subsequent section. The “methodology” section summarizes
our overall system, before elaborating upon the intricacies
of each module. It also describes the baseline models that
we have chosen to build our work upon, and the reasons
for selecting these models. The “experimental set-up” sec-
tion describes the hardware and software platforms used to
conduct our experiments, along with the description of the
robots’ environment. Following this, the outcomes of our
experiments are reported in the “Results” section. Lastly,
we summarize our learnings in the “conclusion” and “future
work” sections.

A. Problem Description

Mapping using heterogeneous sensor data has several
methods discussed in literature. However, sensor fusion for
this purpose typically implies that different sensors are
present on the same robot. Having different types of sensors
on different robots introduces several additional challenges.
Correlating heterogeneous sensor data from different robots
becomes a huge challenge because of different odometries,
with little knowledge of the relative transformation between
the robots - for a general case. A formal definition of the
problem is provided in [2], where it is defined as computing
the joint posterior of relative transformations and merged-
map. We summarize [2]’s formulation of the problem. They
split the problem into two sub-problems: Map-matching, and
map-merging. Mathematically, the map-fusion problem is
written as:

p(MRr
r ,Tr,Rr |mr,mRr )

= p(Tr,Rr
|mr,mRr

)︸ ︷︷ ︸
map matching

· p(MRr
r |Tr,Rr,mr,mRr

)︸ ︷︷ ︸
map merging

Where R = {r1, r2..} are the set of robots in the environ-
ment. Rr = {rn, rn ∈ Rr} is defined as the neighbouring
robots of robot r. mr is the partial map generated by each
by each individual robot r. Robot r receives the set of partial
maps mRr , from nearby robots, where mRr = {mrn , rn ∈
Rr}. Tr,Rr = {Tr,rn , rn ∈ Rr} is the relative transformation
between robot r and rn. The global map is represented by
MRr

r .
For our implementations we only consider two robots, and

the corresponding two sensors being LiDAR and monocular



camera respectively. While one robot shall run a LiDAR-
based SLAM algorithm, the other shall run a Visual-SLAM
algorithm. The objective is to investigate the possibility of
collaborative SLAM between these two robots.

B. Application Areas

Solving the problem of merging maps generated by two
robots, wherein one uses LiDAR data, and the other uses
another sensor (eg. visual) data - has tremendous potential.
Such a system may have widespread use in search-and-rescue
operations, and military applications. Specifically, a system
of this type may useful in scenarios where:

1) Multiple robot-bases are readily available, but sophis-
ticated sensors of a particular type are limited.

2) Sensors are damaged/ obstructed mid-operation and the
robot/s can still execute the mission. The un-damaged
sensors would yield heterogeneous map data, which
shall be used to continue the C-SLAM process.

3) An agent can be localized within a previously gener-
ated map that was obtained by a different agent with
a different type of on-board sensor.

II. RELATED WORK

Within SLAM - the subfields of Super Odometry, Intra-
robot Loop Closures, and Pose Estimation have been ac-
tive areas of research. In recent years, certain complete
C-SLAM systems have been developed and deployed in
realistic scenarios. For example, algorithms deployed in
large-scale scenes during the DARPA Sub-T [23] [24] led
to the developments of new C-SLAM systems, such as the
robust lidar-based approach of [25]. For different modalities,
[26] similarly proposes a vision-based centralized C-SLAM
system incorporating inertial measurements, which has been
tested with up to 12 robots in simulation. In another line of
work, [27] presents a distributed and decentralized system
robust to spurious measurements, along with online experi-
ments on real robots, and a publicly available implementa-
tion. To compensate for system communication challenges,
the authors of [28], put together a completed decentralized
and distributed C-SLAM system including a novel robust
distributed pose graph optimization back-end, and a front-
end 10 producing globally consistent metric-semantic 3D
mesh models of the explored environment. Those works are
some of the best starting points for researchers and engineers
looking to implement, improve and deploy practical C-
SLAM systems in challenging conditions

Within the C-SLAM Front-End, the subfields of Direct and
Indirect Inter Robot Loop Closures as well as Heterogeneous
Sensing have been active areas of research. While Section I
lists techniques such as LOAM, Super Odometry, and ORB
to collect valid point cloud reconstructions, a problem not
often discussed is the presence of a framework to allow
multiple robots with heterogeneous sensor capabilities to
build and work on the same map. [19] describes the use of
the SegMap data structure for loop closure, determining map
transforms, map matching, and map merging. A global target
map is kept along with several partial maps from multiple

robots and a GeometricConsistencyVerification test is per-
formed on the feature vectors of each map (represented as
segments). Thus, this centralized system efficiently updates
and aligns partial maps for an accurate global map.

Within the C-SLAM Back-End, the subfields of Extended
Kalman Filters, Particle Filters, Pose Graph Optimization,
and Perceptual Aliasing Mitigation have been active areas of
research. Heterogeneous sensing comes with the additional
challenge of matching map data in different representation
to perform relocalization and/or map fusion. There are also
potentially unsolved problems with respect to various state
of the art (SOTA) methods using different methods to solve
the same problem.

1) [1] Describes a method to accomplish joint localization
of multiple robots using distributed algorithms. Robots
are equipped with various quality and types of sensors.
The sensor data is fused locally and shared with a
central server. The server then computes the optimal
estimates of the poses of the robots.

2) [2] Proposes a probabilistic approach to integrate maps,
which are independent of the type of sensor and the
SLAM algorithm used. The problem was sub-divided
into two parts, map matching and map merging. Rela-
tive transformation for map matching was obtained by
applying Expectation Maximization to map matching.
The maps were merged with a relative entropy filter
to integrate the measurements of partial maps and
decrease the uncertainty of the global map.

3) [5] Proposes a distributed algorithm amongst multiple
robots to fuse any inter-robot measurement to reduce
dead reckoning error. The problem is formulated as
an optimization where the constraints are a manifold
of lower dimension (Riemannian optimization). This
performs better than the Extended Kalman Filter and
the distributed pose graph method.

Within the System-Level challenges, the subfields of Map
Representation and Communication Constraints have been
active areas of research. While some early techniques simply
share all the data from one robot to another, new sensors
produce increasingly rich and dense data. The days of
raw sensor data transmission are over and most current
techniques in literature opt for some sort of compression or
reduction. [3] surveys performances of several 3D keypoint
detectors (Harris3D, ISS, KPQ, KPQ-SI, NARF), which
are used to find keypoints matched between various sensor
measurements and pointclouds for loop closure amongst
multiple robots. If there are no computational restraints,
KPQ-SI performs the best by finding the most keypoints
and high repeatability. Otherwise, NARF allows for real-time
performance and finds consistent, repeatable keypoints. For
evaluating these techniques, papers like [4] sets upper bounds
on the positioning accuracy of multiple robots (maximum
expected localization uncertainty) in the context of coopera-
tive localization. It is represented as a weighted connectivity
graph representing the relative positions of the robot group.



III. METHODOLOGY

A. Overall Approach

Our system is broken-down into multiple submodules to
tackle the problem of map fusion (described in the next
section). Each robot will produce its own map through an
existing SOTA SLAM algorithm - specific to the sensor that
it is using. The robots shall send this data to a centralized
fusion system in the form of point-clouds. After running a
series of algorithms, the fusion system shall relay the fused
map back to the robots, which would use the information for
collaborative operations.

We make the following assumptions for our system to
work well:

• The point-clouds produced by each of the individual
robots should preferably be dense. The more dense the
point clouds are, the better we expect our system to
work.

• The region explored by one robot should partially
overlap with the region explored by another robot, at
least to a certain extent. Our system will fail if there is
no overlap in explored regions among any robot

The following figure depicts the various modules of our
system, for a specific case of two robots - one running
visual SLAM, and the other using a LiDAR-based SLAM.
Both robots produce point-clouds of the region that they are
exploring (a considerable overlap is expected) and send it
to the “global map alignment” module - implemented on
a centralized base-station. This module estimates a relative
transformation between the overlapping regions of the map,
and sends this information to the “map-merging” module.
The map-merging module also gets the original point-cloud
information and fuses the two maps using the “generalized-
ICP” algorithm. The fused maps are then sent from the base-
station, back to the robots.

While this example depicts the “global-map alignment”
and “map-merging” modules to be on a centralized base-
station (as per our current implementation), we note that
this can be extended to be implemented in a decentralized
manner. The system may be part of the collaborative module
on each robot itself. We elaborate on this in the “future-work”
section.

B. Module-wise Description

1) Global Alignment Module: The goal of this module is
to determine if two maps (possibly from multiple different
sensors) align with each other, and to find the relative
transformation between the two maps. To do this, we first
convert the point-clouds obtained from the 2 robots, into
2D occupancy maps, in order to follow the method imple-
mented in [19]. After obtaining the occupancy maps, the
alignment process is followed - exactly as explained in [19].
Correspondences are obtained between the two maps using
SIFT and SURF feature descriptors, and the similarity scores
are calculated to infer matching points between the maps.
These matches are then passed to the RANSAC module-
which use the ”multi-hypothesis RANSAC” algorithm as

described in the cited paper. This is done to find the transform
that would produce the most inliers between the two input
maps. Features are extracted from the input and then sent
to RANSAC to differentiate between inliers and outliers.
Multiple possible transformations are maintained, where the
probability of each possible transformation is represented
as the sum of Gaussians. During RANSAC, the matching
likelihood is optimized for the two correspondences iter-
atively until a set number of maximum iterations, before
returning the transform associated with the largest weight
SOG (Sum Of Gaussian). This entire process is done to
obtain a transformation matrix between the maps - which
is to be sent to the map-merging module.

2) Map Merging Module: We implement the generalized-
ICP [18] algorithm for fusing the maps. It assumes an
initial transformation between the overlapping regions of
the provided point-clouds. The algorithm first computes
correspondences between the two scans, and then computes
a transformation which minimizes distance between corre-
sponding points using Maximum Likelihood Estimation. It
attaches a probabilistic model to the minimizations step for
better estimation. These steps are performed iteratively until
it converges to the desired transformation.

3) Iterative Merging: The map-merging step is performed
iteratively when the two robots under consideration are
estimated to be in similar positions and orientations. This
iterative approach further refines the fused map. The es-
timation is done based on certain heuristics to determine
the closeness between the robots. Specifically, our system
checks whether the pose between the two robots, position
as well as orientation, lie within a specific threshold. The
time period between two merges is also maintained at a
threshold to prevent excessive computation use. Further, the
quality of each merge is measured using the mean squared
distances between the two LiDAR scans, and if greater
than a certain threshold, the parameters are reset and the
merge transformation is shelved. Further smarter selection
of LiDAR points based on the global map and location to
get an accurate larger map is to be improved in a future
setup. This would potentially help increase confidence in the
iterative merges as time progresses and both robots explore
larger regions of the environment.

4) Collaborative Module: This module is responsible for
communication with the base-station and other peer robots.
It sends the point-cloud information produced by the online
SLAM system, to the base-station, and receives the fused
map. It also sends its own odometry information to the other
robots, and receives the odometry information from peer
robots for collaborative operations. If our map-fusion is to be
implemented in a decentralized manner the map-alignment
and map-merging modules shall be implemented within
the collaborative modules of each robot. The collaborative
module can also be extended to relay other information- like
robot health diagnostics, mission data etc. - depending on
the specific task that the robot is working on.



Fig. 1. Our framework

C. Baseline Models

1) LOAM: LOAM (LiDAR Odometry and Mapping in
Real-time) [9] is among the best performing LiDAR odome-
try algorithms available. The LOAM ranks 3rd in the KITTI
SLAM evaluation (best among the algorithms using only
LiDAR). Hence, it was decided that we would begin with the
open source version of LOAM, ALOAM(Advanced Imple-
mentation of LOAM) [10]. This algorithm is accomplished
in two steps: (a) First, the high speed step running at 10Hz.
This estimates the odometry and velocity of the LiDAR using
low fidelity measurements. (b) Second, the low speed step
runs at 1Hz. This step performs fine matching registration of
point clouds and creates the map of the surrounding area.

Running two algorithms parallely allows the SLAM prob-
lem to be solved real time. For feature point extraction,
only reliable points should be selected and this has been
performed as follows: (a) Only those points were selected
for which none of its surrounding points have been selected.
(b) Points on a plane that are roughly on a plane parallel
to LiDAR beams have been discarded. (c) The number of
selected points within a sub region were not exceeded more
than a threshold. The reported error is about 0.88% (0.55%
on the KITTI website) of the distance traveled. This makes
ALOAM a reliable and accurate SOTA LiDAR odometry
algorithm.

2) ORB: We selected ORB-SLAM-3 our V-SLAM base-
line because it is the SOTA method for V-SLAM, reporting
best performance in accuracy and robustness. It outperforms
other SOTA methods like SLAMM [11], VINS-MONO [12]
and CCM-SLAM [13] according to the original paper [8].
Therefore, we believe that it will be widely used, and evalu-
ating changes to such an algorithm could benefit the research
community. This also uses the ‘ORB’ feature extractor, as
does ORB-SLAM [14], ORB SLAM-2 [15] and ORB-SLAM
Visual Inertial [16]. Our previously proposed hypothesis of
the ‘ORB’ feature extractor being a potential bottleneck

(given the emergence of newer deep-learning-based feature
descriptors which are potentially faster) can potentially be
tested on this algorithm. ORB-SLAM-3 in fact proposes
‘Atlas’ , a system to seamlessly fuse multiple maps. When a
robot gets lost, it starts building a new map - which will be
merged with the previous map while revisiting areas. This
map-merging capability directly relates to our larger aim of
heterogeneous map fusion. Though atlas is far from solving
this problem, the very fact that it provides map-merging
capabilities may serve as a starting point for our goal.

3) Super Odometry: Super Odometry is an IMU-centric
SLAM system combining the advantages of tightly-coupled
methods with loosely coupled methods. It is shown in
[22] the improvements such a SLAM method can provide
over LOAM based on accuracy, resilience, computational
efficiency and extensibility. We make use of Super Odometry
in our LiDAR framework due to the above mentioned
advantages.

The code for our system formulation is made available on
GitHub.1

IV. EXPERIMENTAL SETUP

A. Hardware

For this project, the robots used were ”Traxxas remote
control (RC) trucks”. We use two of these robots, containing
specially mounted payloads, comprising of Velodyne 16
LiDAR sensors, monocular cameras and an Epson g365
IMU. These robots are depicted in Figure 2. The LiDAR
was mounted on top to get a higher perspective of the en-
vironment. For the purpose of collecting data, we controlled
these robots remotely- one using an x-box controller, and the
other through a laptop, which served as a local base-station.

Fig. 2. Hardware setup: robots used

B. Software

We use Robot Operating System (ROS) to program our
system. It has most open source implementations. Most
of our software stack was programmed in C++, and built
on ROS. We use the C++ pointcloud library (PCL) to
implement the generalized-ICP algorithm. Python was used
to script modifying some of our rostopics for calibration and
conversion of 3D scans to 2D for alignment testing. We also
use the open source repositories of ALOAM [10] and the
repository linked in paper [19] An attempt was made to

1https://github.com/sourojit-saha/Slam-Project

https://github.com/sourojit-saha/Slam-Project


Fig. 3. Evironment floor plan

Fig. 4. Evironment view

make use of the official ORB-SLAM-3 repository, but this
implementation was abandoned due to open issue with the
codebase as mentioned in [17].

C. Environment Description

The robots were tested in Carnegie Mellon University’s
Newell Simon Hall (NSH), specifically - in the building’s
B-level. They were initially placed within a room, separated
from one another by roughly a couple meters and 10-20
degrees angle orientation. This initialization would ensure
a significant overlap between the initial maps generated pro-
duced by the two robots, in consonance with the assumption
for our system to work well. The NSH B-level is a long
corridor environment, extended into a parking lot. There
are several obstacles in the scene, specifically boxes, chairs,
tables and parked cars. These act as good feature points for
both visual and LiDAR SLAM. We aim to test our system
in that extend a long distance without losing features as it
satisfies the way we want to constraint our environment. For
this reason, this environment was selected for testing.

D. Experiment

Two RC trucks were used to collect the data. The data was
collected in a tunnel environment. The RC trucks started
from a similar location, separated roughly by a couple
of meters from each other. Two operators controlled the
RC trucks independently to move around and explore the
environment.

1) Both vehicles begin exploring the region to their left.
2) Vehicle B decides to take an earlier turn and explore

the regions on the opposite end of the environment.
3) Vehicle A moves to the other region after exploring its

side of the map until it meets vehicle B.

4) Both vehicles turn and return to the starting position.
The data was collected by the RC trucks and transferred

to a local machine for processing. The data was then used
for simulating the RC trucks as simultaneously moving and
Calibration algorithm was applied to create an aligned map.

V. RESULTS

The demo for our experiment can be seen in the video.2

A. Performance of Baseline Models

1) A-LOAM and Super Odometry on NSH Data: Based on
the collected LiDAR data, two base SLAM implementations
were tested to create the environment map. The maps created
by A-LOAM and Super Odometry can be seen in Figures 5
and 6 respectively. The results given by Super Odometry
were superior to the A-LOAM implementation. This can
be attributed to two aspects, Super Odometry makes initial
predictions at each step based on inertial data and Super
Odometry is an IMU-centric SLAM built on the LOAM
framework to improve it as shown in [22].

Fig. 5. Map created using LiDAR data through ALOAM

Fig. 6. Map created using LiDAR and IMU data through Super Odometry

2) ORB-SLAM on datasets: Based on the sensors avail-
able on the physical robots (i.e. monocular) visual-data
was first collected from the KITTI, EuRoC, and NUance
datasets. Then ORB-SLAM was implemented to create the
environment map and can be seen in the figure below.

ORB-SLAM running on KITTI sequences 00 and 07
simultaneously. It took 562.2 seconds to get the final map

2https://www.youtube.com/watch?v=nB7C6FMvg0I

https://www.youtube.com/watch?v=nB7C6FMvg0I


which contains 1824 keyframes, with translation error of 1%
of trajectory’s dimensions.

ORB-SLAM on the EuRoC MAV dataset took 374 sec-
onds to get the final map consisting of 1200 features. The
depth threshold was 3.852, Scale factor = 1.2, and the
RGB color order was selected (even though the input was in
grayscale).

B. Combining Point Clouds from Two LiDAR Sources

For the following sections, we made use of LiDAR maps
created through Super Odometry to minimize drifts due to
individual vehicle SLAM. As explained in Section III-B.2
(Map Merging Module), the maps were created through
the two robot setup described in Section IV (Experimental
Setup). Both vehicles start at a similar location in the
environment. The timing at which each robot begins its
operation doesn’t affect our algorithm. The second robot is
given a transformation (rotation and translation) based on the
initial LiDAR points from the first robot. The Generalized-
ICP algorithm has a few tunable parameters that include
number of LiDAR scans, maximum iterations and max corre-
spondence distance. A decent estimate from the start position
or global alignment module is assumed, so the maximum
iterations doesn’t create a significant variation on the results.
Max correspondence distance sets the maximum distance
threshold between two corresponding points in source and
target scans. This creates certain variations in map merging
and the quality of the merge is measured with the fitness
score (Mean squared error) as shown in Table I. The optimal
maximum distance threshold is chosen through this analysis
(5.0). Increasing the number of LiDAR scans increases
computation time but also improves the point matching.
However, if the robots are moving while the LiDAR scans
are selected, outlying LiDAR points might get included that
affect our map merging as shown in Figures 7 - 10. Here,
comparisons between 1, 2, 5 and 10 frame overlaps are seen.
The variation in quality between different numbers of frames
while robots might not be stationary displays the importance
of the iterative map merging to get a better understanding of
the environment without spending as much compute on an
alignment. The mean square error between LiDAR points
is measured along with visual feature differentiations to
compare the quality of the merged maps.

TABLE I
AVERAGE FITNESS VALUE VARIATION WITH MAXIMUM DISTANCE

THRESHOLD OVER MULTIPLE FRAME VALUES

Max. Dist. Threshold (m) 0.1 1.0 5.0 8.0
Average Fitness Score 0.46 0.42 0.27 0.29

C. Results With and Without Loop Merging

The importance of loop merging was explained in Sec-
tion III-B.3 (Iterative Merging) and that can be validated
through our results. As expected, the initial estimate of
the robot locations through the starting position or global

Fig. 7. Map created with 1 LiDAR frame matching

Fig. 8. Map created with 2 LiDAR frames matching

alignment process may or may not be very accurate. This
directly affects the quality of the Map Merging Module that
is performing a non-linear optimization over a significant
number of LiDAR points. To get rid of such uncertainties
and increase robustness to our system performance, the
comparison results of a complete run of the two robots is seen
in Figures 11 and 12. It can clearly be seen that features such
as walls, doors, corners and corridors, especially in regions
further from the initial position don’t align as well without
the Iterative Merging Module.

D. Global Feature Matching

As mentioned in Section III-B.1, a Global Alignment
Module is required to handle cases when the robots start
operations in highly varied locations that the other modules
wouldn’t be able to handle on their own. Feature matching
among overlapping regions of the maps was used to help
solve this. This was accomplished by dividing the map in
small patches and finding similarity among the patches.
The patches with the highest similarity value was used to
calculate the transformation. Due to presence of noise and
sparsity of the map used, false matches were detected and

Fig. 9. Map created with 5 LiDAR frames matching



Fig. 10. Map created with 10 LiDAR frames matching

Fig. 11. Map created after one initial merge

affected the accuracy of our method. This could potentially
be improved in the future with the help of a probability
occupancy map. Nevertheless, on allowing the robots to
move around the area and explore a significant region, we
were able to get accurate global matching, that helped display
the working of our pipeline. It can be seen in Figure 13
that partially overlapped maps are able to match features.
Figure 14 displays the final overlapped maps, following the
alignment steps.

E. Challenges

While the A-LOAM and Super Odometry using LiDAR
data was easier to implement and could generate consistent
point clouds. Implementing ORB-SLAM was challenging
due to errors in compiling and motion blur leading to
mixed pixels in the point clouds. ORB-SLAM remains the
SOTA algorithm when working with visual data, and the
discrepancies in the output are not indicative of the model’s
performance, but instead of broken code dependencies in
publicly available repos which can be fixed with time.

Fig. 12. Map created with iterative merging

Fig. 13. Feature matching

Fig. 14. Globally merged maps

During testing over datasets, some loops failed in the
monocular camera case because the depth reconstruction is
done using two consecutive frames. This is not very reliable.
In order to get good depth reconstruction it is necessary
that there should be some side shift between two frames.
When one object can be observed in different locations
in different pictures, depth calculation is more consistent.
Because the robot is moving in a straight path, there is not
enough side shift between consecutive images to recover
good quality depth. This can be solved if stereo cameras were
used instead because we get two images at every instant, and
thus side shift information is available at every instance. To
test this, the ORB-SLAM implementation was also tested
over EuRoC’s dataset. Because this dataset has both visual-
inertial and stereo datasets for similar paths, the results were
easy to compare.

VI. CONCLUSIONS

The goal of this research work was to enable the fusion of
point clouds from two or more sensors, even if the sensors
are fundamentally different, on different robots, and have a
time-delay. Additionally, the baseline of this algorithm was
set in place, it was important to test it on physical robots to
test real-time performance and improve edge cases.

These objectives were achieved using two modalities –
LiDAR data and Visual data. The C-SLAM algorithm was
based on three baselines – ALOAM, Super Odometry and
ORB-SLAM. An improved global alignment module and
map merging module was implemented in the proposed
framework. Experiments were done on physical robots and
good performance benchmarks were observed. This direction
of work allows for:

1) Modularity when multiple robot bases can be used
while minimizing the need for sophisticated sensors
(which are limited and sometimes expensive).



2) Sensors which get damaged/obstructed mid-operation
to still execute the mission.

3) Localizing an agent within a previously generated map
obtained by a different agent with a different type of
on-board sensor.

4) Faster and more robust mapping and localization.
Some challenges were faced as discussed in section V-E,

and based on our observations, this work can be extended in
a few directions as elucidated in Section VII.

VII. FUTURE WORK
There are several other, more nuanced methods for map

matching, merging, and loop closure of heterogeneous sen-
sors on multiple robots that would be more efficient and
effective than our current implementation. The expectation
maximization approach [20] computes the joint posterior of
relative transformations and merges the partial maps frame
by frame, allowing for generalizability. Another method is
the SegMap data structure [21] where feature vectors from
each local partial map (from each robot) are compared
with a global target map in the form of segments. Then,
segment matching is performed using k-nearest neighbors
and geometric consistency verification to verify the validity
of the correspondence between two maps.

As for our current iterative merging module, we make use
of LiDAR scans at a time when the robots satisfy certain
conditions. This can be modified to only include a certain
density of pointclouds at a location and to search over a
larger region based on what has been explored previously
by both robots.

ACKNOWLEDGMENT
We would like to thank Dr. Michael Kaess and the Teach-

ing Assistants of the course 16-833 (Robot Localization and
Mapping) at Carnegie Mellon University, for their constant
guidance and support throughout the duration of this project.

REFERENCES

[1] T. Bailey, M. Bryson, H. Mu, J. Vial, L. McCalman and H.
Durrant-Whyte, ”Decentralised cooperative localisation for hetero-
geneous teams of mobile robots,” 2011 IEEE International Con-
ference on Robotics and Automation, 2011, pp. 2859-2865, doi:
10.1109/ICRA.2011.5979850.

[2] Y. Yue et al., ”Multi-Robot Map Fusion Framework using Het-
erogeneous Sensors,” 2019 IEEE International Conference on Cy-
bernetics and Intelligent Systems (CIS) and IEEE Conference on
Robotics, Automation and Mechatronics (RAM), 2019, pp. 536-541,
doi: 10.1109/CIS-RAM47153.2019.9095798.

[3] E. R. Boroson and N. Ayanian, ”3D Keypoint Repeatability for
Heterogeneous Multi-Robot SLAM,” 2019 International Conference
on Robotics and Automation (ICRA), 2019, pp. 6337-6343, doi:
10.1109/ICRA.2019.8793609.

[4] A. I. Mourikis and S. I. Roumeliotis, ”Analysis of positioning
uncertainty in reconfigurable networks of heterogeneous mobile
robots,” IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA ’04. 2004, 2004, pp. 572-579 Vol.1, doi:
10.1109/ROBOT.2004.1307210.

[5] J. Knuth and P. Barooah, ”Collaborative localization with heteroge-
neous inter-robot measurements by Riemannian optimization,” 2013
IEEE International Conference on Robotics and Automation, 2013,
pp. 1534-1539, doi: 10.1109/ICRA.2013.6630774.

[6] Lajoie, Pierre-Yves, et al. ”Towards Collaborative Simultaneous Lo-
calization and Mapping: a Survey of the Current Research Landscape.”
arXiv preprint arXiv:2108.08325 (2021).

[7] D. Villagrá Guilarte, ‘Collaborative Localization and Mapping with
Heterogeneous Depth Sensors’, Dissertation, 2020.

[8] Campos, Carlos, et al. ”Orb-slam3: An accurate open-source library
for visual, visual–inertial, and multimap slam.” IEEE Transactions on
Robotics 37.6 (2021): 1874-1890.

[9] Zhang, Ji and Sanjiv Singh. “LOAM: LiDAR Odometry and Mapping
in Real-time.” Robotics: Science and Systems (2014).

[10] ALOAM - an open source implementation of LOAM -
https://github.com/HKUST-Aerial-Robotics/A-LOAM

[11] Daoud HA, Md. Sabri AQ, Loo CK, Mansoor AM
(2018) SLAMM: Visual monocular SLAM with continuous
mapping using multiple maps. PLoS ONE 13(4): e0195878.
https://doi.org/10.1371/journal.pone.0195878

[12] Qin, Tong, Peiliang Li, and Shaojie Shen. ”Vins-mono: A robust and
versatile monocular visual-inertial state estimator.” IEEE Transactions
on Robotics 34.4 (2018): 1004-1020.

[13] Schmuck, Patrik, and Margarita Chli. ”CCM-SLAM: Robust and
efficient centralized collaborative monocular simultaneous localization
and mapping for robotic teams.” Journal of Field Robotics 36.4 (2019):
763-781.

[14] Mur-Artal, Raul, Jose Maria Martinez Montiel, and Juan D. Tardos.
”ORB-SLAM: a versatile and accurate monocular SLAM system.”
IEEE transactions on robotics 31.5 (2015): 1147-1163.

[15] Mur-Artal, Raul, and Juan D. Tardós. ”Orb-slam2: An open-source
slam system for monocular, stereo, and rgb-d cameras.” IEEE trans-
actions on robotics 33.5 (2017): 1255-1262.

[16] Mur-Artal, Raúl, and Juan D. Tardós. ”Visual-inertial monocular
SLAM with map reuse.” IEEE Robotics and Automation Letters 2.2
(2017): 796-803.

[17] Open Issue with ORB-SLAM-3 GitHub repository:
https://github.com/UZ-SLAMLab/ORB SLAM3/issues/403

[18] Segal, Aleksandr, Dirk Haehnel, and Sebastian Thrun. ”Generalized-
icp.” Robotics: science and systems. Vol. 2. No. 4. 2009.

[19] Blanco, Jose-Luis, Javier González-Jiménez, and Juan-Antonio
Fernández-Madrigal. ”A robust, multi-hypothesis approach to match-
ing occupancy grid maps.” Robotica 31.5 (2013): 687-701.

[20] Yue, Yufeng, et al. ”Multi-Robot Map Fusion Framework using
Heterogeneous Sensors.” 2019 IEEE International Conference on
Cybernetics and Intelligent Systems (CIS) and IEEE Conference on
Robotics, Automation and Mechatronics (RAM). IEEE, 2019.

[21] Barbas Laina, Sebastián. ”Heterogeneous collaborative SLAM: local-
ization between camera and depth sensors.” (2021).

[22] Zhao, Shibo, et al. ”Super odometry: IMU-centric LiDAR-visual-
inertial estimator for challenging environments.” 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE,
2021.

[23] Hudson, N., Talbot, F., Cox, M., Williams, J., Hines, T., Pitt, A.,
Wood, B., Frousheger et. al. (2021). Heterogeneous Ground and Air
Platforms, Homogeneous Sensing: Team CSIRO Data61’s Approach
to the DARPA Subterranean Challenge. Submitted to the DRC Finals
Special Issue of the Journal of Field Robotics.

[24] Agha, A., Otsu, K., Morrell, B., Fan, D. D., Thakker, R., Santamaria-
Navarro, A., et al. (2021). NeBula: Quest for Robotic Autonomy in
Challenging Environments; TEAM CoSTAR at the DARPA Subter-
ranean Challenge. Accepted for publication in the Journal of Field
Robotics, 2021.

[25] Ebadi, K., Chang, Y., Palieri, M., Stephens, A., Hatteland, A., Heiden,
E., Thakur, A., Funabiki, N., Morrell, B., Wood, S., Carlone, L., and
Agha-mohammadi, A.-a. (2020). LAMP: Large-Scale Autonomous
Mapping and Positioning for Exploration of Perceptually-Degraded
Subterranean Environments. arXiv:2003.01744.

[26] Schmuck, P., Ziegler, T., Karrer, M., Perraudin, J., and Chli, M. (2021).
COVINS: Visual Inertial SLAM for Centralized Collaboration. In 2021
IEEE International Symposium on Mixed and Augmented Reality
Adjunct (ISMAR-Adjunct), pages 171–176.

[27] Lajoie, P.-Y., Ramtoula, B., Chang, Y., Carlone, L., and Beltrame,
G. (2020). DOOR-SLAM: Distributed, Online, and Outlier Resilient
SLAM for Robotic Teams. IEEE Robotics and Automation Letters,
5(2):1656–1663.

[28] Tian, Y., Chang, Y., Arias, F. H., Nieto-Granda, C., How, J. P., and
Carlone, L. (2021). Kimera-Multi: Robust, Distributed, Dense Metric-
Semantic SLAM for Multi-Robot Systems. arXiv:2106.14386.


	INTRODUCTION
	Problem Description
	Application Areas

	RELATED WORK
	METHODOLOGY
	Overall Approach
	Module-wise Description
	Global Alignment Module
	Map Merging Module
	Iterative Merging
	Collaborative Module

	Baseline Models
	LOAM
	ORB
	Super Odometry


	EXPERIMENTAL SETUP
	Hardware
	Software
	Environment Description
	Experiment

	RESULTS
	Performance of Baseline Models
	A-LOAM and Super Odometry on NSH Data
	ORB-SLAM on datasets

	Combining Point Clouds from Two LiDAR Sources
	Results With and Without Loop Merging
	Global Feature Matching
	Challenges

	CONCLUSIONS
	FUTURE WORK
	References

